Regions of Escherichia coli TonB and FepA proteins essential for in vivo physical interactions.

نویسندگان

  • R A Larsen
  • D Foster-Hartnett
  • M A McIntosh
  • K Postle
چکیده

The transport of Fe(III)-siderophore complexes and vitamin B12 across the outer membrane of Escherichia coli is an active transport process requiring a cognate outer membrane receptor, cytoplasmic membrane-derived proton motive force, and an energy-transducing protein anchored in the cytoplasmic membrane, TonB. This process requires direct physical contact between the outer membrane receptor and TonB. Previous studies have identified an amino-terminally located region (termed the TonB box) conserved in all known TonB-dependent outer membrane receptors as being essential for productive energy transduction. In the present study, a mutation in the TonB box of the ferric enterochelin receptor FepA resulted in the loss of detectable in vivo chemical cross-linking between FepA and TonB. Protease susceptibility studies indicated this effect was due to an alteration of conformation rather than the direct disruption of a specific site of physical contact. This suggested that TonB residue 160, implicated in previous studies as a site of allele-specific suppression of TonB box mutants, also made a conformational rather than a direct contribution to the physical interaction between TonB and the outer membrane receptors. This possibility was supported by the finding that TonB carboxyl-terminal truncations that retained Gln-160 were unable to participate in TonB-FepA complex formation, indicating that this site alone was not sufficient to support the physical interactions involved in energy transduction. These studies indicated that the final 48 residues of TonB were essential to this physical interaction. This region contains a putative amphipathic helix which could facilitate TonB-outer membrane interaction. Amino acid replacements at one site in this region were found to affect energy transduction but did not appear to greatly alter TonB conformation or the formation of a TonB-FepA complex. The effects of amino acid substitutions at several other TonB sites were also examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confined Mobility of TonB and FepA in Escherichia coli Membranes

The important process of nutrient uptake in Escherichia coli, in many cases, involves transit of the nutrient through a class of beta-barrel proteins in the outer membrane known as TonB-dependent transporters (TBDTs) and requires interaction with the inner membrane protein TonB. Here we have imaged the mobility of the ferric enterobactin transporter FepA and TonB by tracking them in the membran...

متن کامل

Nucleotide sequence of the gene for the ferrienterochelin receptor FepA in Escherichia coli. Homology among outer membrane receptors that interact with TonB.

We have determined the nucleotide sequence of the Escherichia coli fepA gene, which codes for the outer membrane receptor for ferrienterochelin and colicins B and D. The predicted FepA polypeptide has a molecular weight of 79,908 and consists of 723 amino acids. A 22-amino acid leader or signal peptide preceded the mature protein. With respect to overall composition, hydropathy, net charge and ...

متن کامل

Characterization of in vitro interactions between a truncated TonB protein from Escherichia coli and the outer membrane receptors FhuA and FepA.

High-affinity iron uptake in gram-negative bacteria depends upon TonB, a protein which couples the proton motive force in the cytoplasmic membrane to iron chelate receptors in the outer membrane. To advance studies on TonB structure and function, we expressed a recombinant form of Escherichia coli TonB lacking the N-terminal cytoplasmic membrane anchor. This protein (H(6)-'TonB; M(r), 24,880) w...

متن کامل

Phage display reveals multiple contact sites between FhuA, an outer membrane receptor of Escherichia coli, and TonB.

The ferric hydroxamate uptake receptor FhuA from Escherichia coli transports siderophores across the outer membrane (OM). TonB-ExbB-ExbD transduces energy from the cytoplasmic membrane to the OM by contacts between TonB and OM receptors that contain the Ton box, a consensus sequence near the N terminus. Although the Ton box is a region of known contact between OM receptors and TonB, our biophys...

متن کامل

Ligand-specific opening of a gated-porin channel in the outer membrane of living bacteria.

Ligand-gated membrane channels selectively facilitate the entry of iron into prokaryotic cells. The essential role of iron in metabolism makes its acquisition a determinant of bacterial pathogenesis and a target for therapeutic strategies. In Gram-negative bacteria, TonB-dependent outer membrane proteins form energized, gated pores that bind iron chelates (siderophores) and internalize them. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 10  شماره 

صفحات  -

تاریخ انتشار 1997